From Reality to Model

Adjunct Prof Mark Klee Headshot

Mark Klee; Adjunct Professor – Eastern Kentucky University

I know what you are thinking “From Reality to Model” shouldn’t that be the other way around? As an engineer at Toyota for the past 24 years I often encounter manufacturing processes that have slowly de-optimized. And now, just by walking by the processes on the floor, I can see waste (motion, waiting, over-processing). I know this means that these processes need some work.

Our typical method of improving these processes would be to employ the traditional Toyota Production System tools. We begin with observation and time study. Then we use video for motion analysis making these processes visual on paper with standardized work combination tables, standardized work charts, and production capacity calculations. Through these simple analysis tools, the waste in the process becomes more obvious and begins to generate ideas for improvement.

This is typically done one process or one zone of processes at at time. It is also usually done with paper, pencil, and stopwatch. The methods have proven time and again to be effective for process improvement and an effective method of developing engineers as well as manufacturing floor members in process improvement.

After the waste is discovered and the improvement ideas generated it is time to try some improvement ideas. The process visualization and capacity calculation documents are then modified to simulate the improvement idea. Then it is time to try the modified process on the production floor. The concept is tested in a controlled environment. After success is documented, the process standards are modified the team is trained to the new standard.

Using ProModel works very well with the Toyota Production System and as a method for developing manufacturing engineers, manufacturing floor members and students in manufacturing focused curriculum. In Eastern Kentucky University’s Applied Engineering and Management class, we follow this progression.

  • We first focus on learning process observation and visualization skill using the standard Toyota Production System tools.
  • Next we learn the processes of implementing controlled change in a mass production environment. We learn and practice these skills on the manufacturing floor to gain real world experience.
  • After learning the basics of observation and improvement, we come back to the classroom where we employ ProModel to fine tune our processes and learn if there are any opportunities for optimization that may have been overlooked.
  • With ProModel we can also test scenarios that may be difficult to test on the actual production floor like moving a piece of equipment, modifying a cycle time, changing a conveyor length or changing a delivery frequency.
  • These trials can be done as quickly as you can change the numbers in the model allowing for many more cycles of trial and error or trial and success in a shorter time.

As a result of the course and ProModel, students have deeper understanding of both the theory and application of process improvement allowing them to be an instant contributor to a manufacturing organization upon their graduation.

In the end, deeply understanding the current reality through observation, documentation, and modification of the current process helps us make a more accurate model. The result of the more accurate model is further optimization. This deepens learning and the improvement cycle continues.

Brief Bio:

Mark Klee, BS Eastern Kentucky University 1990, MS Purdue University 1992
Toyota Motor Manufacturing Kentucky 1994-Present
Eastern Kentucky University Adjunct Faculty 2012-Present

One Way Automotive Manufacturers Can Meet the Challenges of a Rapidly Changing Market

The automotive industry is likely to change more in the next 10 years than it has in the previous 50. It seems like in so many industries today including technology, entertainment, and consumer products, change at a very rapid pace.  The auto industry is by far no exception.  There are many new entrants into car making, add to that self-driving vehicles, electric cars, and car sharing just to name a few.  All these factors are providing increased competition.  Not to mention the rapidly fluctuating price of gasoline.  With instability in the Middle-East and increased oil production in the US and other parts of the world, who knows how that may change in the next 6 months.  There is no doubt that reacting quickly and strategically to these rapid demand shifts will be an absolute priority for auto leaders in 2016.

Simulation is a tool that can help automakers accommodate these rapid changes and develop scenarios for planning for the uncertainties that may occur.

Consider that a US plant reduced its work force by 20% in 2010 during the recession.  Not only that, but floor space has been re-arranged to accommodate those reductions.  Now in this post-recession period the demand for vehicles from this plant is increasing rapidly.  How do you meet that demand with the existing workforce? Can you build the number of vehicles necessary without moving lines or cells around again and hiring more workers?  If you do hire, which positions, how many, and on what shifts do you need more FTEs?  Simulation can help you make these decisions more confidently.  Here are some ways in which it has already been done.

The Rim Assembly Model

A large automotive component manufacturer experienced difficulties reaching a desired line speed.  The operation involved mating a set of tires with rims for multiple manufacturers.  The line was consistently under producing and management wanted the problem solved now!  Given the interactions between the various parts of the line, it was difficult to assess which component was the actual bottleneck. Only a limited number of things could be changed, so the objective was to find what modification to the line was possible to achieve improved speed in a short period of time with as little capital investment as possible.  The following modifications were tested:

  • Sequence the tires to the lean cells. The baseline was for tires one and two to go to lean cell one and tires three and four to go to lean cell two.
  • Shorten the load time between rims by staffing and laying out load position differently
  • Use only one lean cell
  • Eliminate the use of “switch-outs” where a failed mating between rim and tire at the lean cell required that the lean cell be stopped
  • Adjust the tire feed spur lengths

The largest gain in line rate required three changes: the time between rim arrivals was reduced from 23 seconds to 16 seconds, the elimination of switch-outs and the lengthening of tire feed spur lengths.

These modifications allowed the client to get to the desired line rate and the model was developed and results were submitted within 5 days. View the video for a quick sample of the model.

Check out one of our success stories about another auto manufacturer: Tofus-FIAT Realizes 48% Reduction in WIP with ProModel Simulation. This solution story is available among many from our online library. Many solution and model videos are also available on our YouTube Channel. If you would like to learn more about ProModel solutions contact us.

Other References:
http://www.weforum.org/agenda/2016/01/the-next-revolution-in-the-car-industry
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/a-road-map-to-the-future-for-the-auto-industry