One Way Automotive Manufacturers Can Meet the Challenges of a Rapidly Changing Market

The automotive industry is likely to change more in the next 10 years than it has in the previous 50. It seems like in so many industries today including technology, entertainment, and consumer products, change at a very rapid pace.  The auto industry is by far no exception.  There are many new entrants into car making, add to that self-driving vehicles, electric cars, and car sharing just to name a few.  All these factors are providing increased competition.  Not to mention the rapidly fluctuating price of gasoline.  With instability in the Middle-East and increased oil production in the US and other parts of the world, who knows how that may change in the next 6 months.  There is no doubt that reacting quickly and strategically to these rapid demand shifts will be an absolute priority for auto leaders in 2016.

Simulation is a tool that can help automakers accommodate these rapid changes and develop scenarios for planning for the uncertainties that may occur.

Consider that a US plant reduced its work force by 20% in 2010 during the recession.  Not only that, but floor space has been re-arranged to accommodate those reductions.  Now in this post-recession period the demand for vehicles from this plant is increasing rapidly.  How do you meet that demand with the existing workforce? Can you build the number of vehicles necessary without moving lines or cells around again and hiring more workers?  If you do hire, which positions, how many, and on what shifts do you need more FTEs?  Simulation can help you make these decisions more confidently.  Here are some ways in which it has already been done.

The Rim Assembly Model

A large automotive component manufacturer experienced difficulties reaching a desired line speed.  The operation involved mating a set of tires with rims for multiple manufacturers.  The line was consistently under producing and management wanted the problem solved now!  Given the interactions between the various parts of the line, it was difficult to assess which component was the actual bottleneck. Only a limited number of things could be changed, so the objective was to find what modification to the line was possible to achieve improved speed in a short period of time with as little capital investment as possible.  The following modifications were tested:

  • Sequence the tires to the lean cells. The baseline was for tires one and two to go to lean cell one and tires three and four to go to lean cell two.
  • Shorten the load time between rims by staffing and laying out load position differently
  • Use only one lean cell
  • Eliminate the use of “switch-outs” where a failed mating between rim and tire at the lean cell required that the lean cell be stopped
  • Adjust the tire feed spur lengths

The largest gain in line rate required three changes: the time between rim arrivals was reduced from 23 seconds to 16 seconds, the elimination of switch-outs and the lengthening of tire feed spur lengths.

These modifications allowed the client to get to the desired line rate and the model was developed and results were submitted within 5 days. View the video for a quick sample of the model.

Check out one of our success stories about another auto manufacturer: Tofus-FIAT Realizes 48% Reduction in WIP with ProModel Simulation. This solution story is available among many from our online library. Many solution and model videos are also available on our YouTube Channel. If you would like to learn more about ProModel solutions contact us.

Other References:
http://www.weforum.org/agenda/2016/01/the-next-revolution-in-the-car-industry
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/a-road-map-to-the-future-for-the-auto-industry