Simulating The Impact Of New Laws On Probation Systems

JCowden Profile Pic

Jennifer Cowden – Sr. Consultant

It was recently announced that the U.S. Justice Department is planning to release 6000 inmates near the end of the month due to new sentencing policies for non-violent drug-offenders.  Most of the prisoners will be placed in half-way houses and drug rehab centers as part of the “largest one-time release of federal prisoners” in U. S History, which begs the question: are these rehabilitation centers going to be ready for this sudden influx?

One state has had a similar law change recently and is rightly concerned about the impact that the new sentencing structure will have on the probation system and ancillary support services.  ProModel consultants have been working with this state’s Administrative Office of Probation to build a series of models around different aspects of the probation system.  The previous phase model studied the movement of youths through the juvenile probation system, while the model discussed in the video below addresses the adult probationer population.

In addition to gaining insight into bottlenecks in the process, the Probation Office was interested in using Predictive Analytics to assess the impact that the new law will have on the probation office workload and the local county jail occupancy rate.  As part of the law change, convicts who are guilty of certain felonies will spend part of their sentence in probation instead of spending all of it in prison.  These felons are at a higher risk level than the current average probationer,  and will likely cause a disproportionate workload increase on the probation officers as well as take up county jail space should custodial sanctions need to be implemented.  The model will be used to help quantify the increased demand so that the appropriate adjustments can be made ahead of time.

The next steps for this model is to combine it with the juvenile model in order to predict more accurately the demand on shared services and resources.

Project Portfolio Management Made Easy!

In this 3 minute overview of Portfolio Scheduler, one of the many capabilities within Enterprise Portfolio Simulator (EPS), Dave Higgins demonstrates how this innovative function allows you to recognize resource supply/demand constraints and reveal alternative portfolio delivery options.  Check it out!

To learn more about Portfolio Scheduler contact Dave Higgins at:

dhiggins@promodel.com  

717 – 884 – 8002 

Demystifying Big Data

Rob Wedertz – Director, Navy Programs

Rob Wedertz – Director, Navy Programs

We live in a data-rich world.  It’s been that way for a while now.  “Big Data” is now the moniker that permeates every industry.  For the sake of eliciting a point from the ensuing paragraphs, consider the following:

FA-18 / Extension / Expenditure / Life / Depot / Operations / Hours / Fatigue

Taken independently, the words above mean very little.  However, if placed in context, and with the proper connections applied, we can adequately frame one of the most significant challenges confronting Naval Aviation:

A higher than anticipated demand for flight operations of the FA-18 aircraft has resulted in an increased number of flight hours being flown per aircraft.  This has necessitated additional depot maintenance events to remedy fatigue life expenditure issues in order to achieve an extension of life cycles for legacy FA-18 aircraft.

120613-N-VO377-095  ARABIAN GULF (June 13, 2012) An F/A-18C Hornet assigned to the Blue Blasters of Strike Fighter Squadron (VFA) 34 launches from the flight deck of the Nimitz-class aircraft carrier USS Abraham Lincoln (CVN 72). Lincoln is deployed to the U.S. 5th Fleet area of responsibility conducting maritime security operations, theater security cooperation efforts and combat flight operations in support of Operation Enduring Freedom. (U.S. Navy photo by Mass Communication Specialist 2nd Class Jonathan P. Idle/Released)

(U.S. Navy photo by Mass Communication Specialist 2nd Class Jonathan P. Idle/Released)

The point here is that it is simply not enough to aggregate data for the sake of aggregation.  The true value in harnessing data is knowing which data are important, which are not, and how to tie the data together.  Often times subscribing to the “big data” school of thought has the potential of distraction and misdirection.  I would argue that any exercise in “data” must first begin with a methodical approach to answering the following questions:

“What challenge are we trying to overcome?”

“What are the top 3 causes of the challenge?”

“Which factors are in my control and which ones are not?”

“Do I have access to the data that affect the questions above?”

“How can I use the data to address the challenge?”

weeds sept 2015 blog graphic

While simply a starting point, the above questions will typically allow us to frame the issue, understand the causal effects of the issue, and most importantly facilitate the process of honing in on the data that are important and systematically ignore the data that are not.

To apply a real-world example of the methodology outlined above, consider the software application ProModel has provided to the U.S. Navy – the Naval Synchronization Toolset (NST).

“What challenge are we trying to overcome?”

Since 2001, the U.S. Navy has participated in overseas contingency operations (Operation Enduring Freedom and Operation Iraqi Freedom) and the legacy FA-18 aircraft (A-D) has consumed more its life expectancy at a higher rate.  Coupled with the delay in Initial Operating Capability (IOC) of the F-35C aircraft, the U.S. Navy has been required to develop and sustain a Service Life Extension Program (SLEP) to extend the life of legacy FA-18 aircraft well beyond their six thousand hour life expectancy and schedule and perform high flight hour inspections and major airframe rework maintenance events.  The challenge is: “how does the Navy effectively manage the strike fighter inventory (FA-18) via planned and unplanned maintenance, to ensure strike fighter squadrons are adequately sourced with the right number of FA-18s at the right time?”

“What are the top 3 causes of the challenge?”

  • Delay in IOC of the F-35C
  • Higher flight hour (utilization) and fatigue life expenditure
  • Fixed number of legacy FA-18 in the inventory

“Which factors are in my control and which ones are not?”

 In:

  • High flight hour inspection maintenance events
  • Airframe rework (depot events)

Out:

  • Delay in IOC of the F-35C
  • Fixed number of legacy FA-18 in the inventory

“Do I have access to the data that affect the questions above?”

Yes.  The planned IOC of the F-35C, flight hour utilization of FA-18 aircraft, and projected depot capacity and requirements are all data that is available and injected into the NST application.

“How can I use the data to address the challenge?”

Using the forecasted operational schedules of units users can proactively source FA-18 aircraft to the right squadron at the right time; balanced against maintenance events, depot rework requirements, and overall service life of each aircraft.

Now that the challenge has been framed, the constraints have been identified, and the data identified, the real work can begin.  This is not to say that there is one answer to a tough question or even that there is a big red “Easy” button available.  Moreover, it has allowed us to ensure that we do not fall victim to fretting over an issue that is beyond our control or spend countless hours wading through data that may not be germane.

NST was designed and developed with the points made above in mind.  The FA-18 is a data-rich aircraft.  However, for the sake of the users, NST was architecturally designed to be mindful of only the key fatigue life expenditure issues that ultimately affect whether the aircraft continues its service life or becomes a museum piece.  In the end, NST’s users are charged with providing strike fighter aircraft to units charged with carrying out our national security strategy.  By leveraging the right data, applying rigor to the identification of issues in and out of their control, and harnessing the technology of computational engines, they do precisely that.

Simulating Impatient Customers

ProModel Guest Blogger: Dr. Farhad Moeeni, Professor of Computer & Information Technology, Arkansas State University

Dr. Farhed Moeeni - Prof. of Computer & Information Technology, Arkansas State University

Dr. Farhad Moeeni 

Simulation is one of the required courses for the MBA degree with MIS concentration at Arkansas State University.  The course was developed a few years ago with the help of a colleague (Dr. John Seydel).  We use Simulation Using Promodel, Third Ed. (Harrell, et al., Ghosh and Bowden, McGraw-Hill) for the course.  In addition, students have access to the full-version of the Promodel software in our Data Automation Laboratory. The course has attracted graduate students from other areas including arts and sciences, social sciences and engineering technology who took the course as elective or for enhancing research capability.  Students experience the entire cycle of simulation modeling and analysis through                                          comprehensive group projects with a focus on business decision making.

Most elements of waiting lines are shared by various queuing systems regardless of entity types such as human, inanimate, or intangible.  However, a few features are unique to human entities and service systems, two of which are balking and reneging.  One of the fairly recent class projects included modeling the university’s main cafeteria with various food islands. Teams were directed to also model balking and reneging, which was challenging. The project led to studying various balking and reneging scenarios and their modeling implications, which was very informative.

Disregarding the simple case of balking caused by queue capacity, balking and reneging happens because of impatience.  Balking means customers evaluate the waiting line, anticipate the required waiting time upon arrival (most likely by observing the queue length) and decide whether to join the queue or leave. In short, balking happens when the person’s tolerance for waiting is less than the anticipated waiting time at arrival.  Reneging happens after a person joins the queue but later leaves because he/she feels waiting no longer is tolerable or has utility.  Literature indicates that both decisions can be the result of complex behavioral traits, criticality of the service and service environment (servicescape). Therefore, acquiring information about and modeling balking or reneging can be hard.  However, it offers additional information on service effectiveness that is hard to derive from analyzing waiting times and queue length.

For modeling purposes, the balking and reneging behavior is usually converted into some probability distributions or rules to trigger them. To alleviate complexity, simplified approaches have been suggested in the literature.  Each treatment is based on simplifying assumptions and only approximates the behavior of customers. This article addresses some approaches to simulate balking.  Reneging will be covered in future articles.  Scenarios to model balking behavior include:

  1. On arrival, the entity joins the queue only if the queue length is less than a specified number but balks otherwise.
  2. On arrival, the entity joins the queue if the queue length is less than or equal to a specified number. However, if the length of the queue exceeds, the entity joins the queue with probability  and balks with probability  (Bernoulli distribution).
  3. The same as Model 2 but several (Bernoulli) conditional probability distribution is constructed for various queue lengths (see the Example).
  4. On arrival, a maximum tolerable length of queue is determined from a discrete probability distribution for each entity. The maximum number is then compared with the queue length at the moment of arrival to determine whether or not the entity balks.

The first three approaches model the underlying tolerance for waiting implicitly.  Model 4 allows tolerance variation among customers to be modeled explicitly.

A simulation example of Model 3 is presented. The purpose is to demonstrate the structure of the model and not model efficiency and compactness.  The model includes a single server, FCFS discipline, random arrival and service.  The conditional probability distributions of balking behavior are presented in the table. The data must be extracted from the field.  The simulation model is also presented below. After running the models for 10 hours, 55 (10% of) customers balked. Balking information can be very useful in designing or fine-tuning queuing systems in addition to other statistics such as average/maximum waiting time or queue length, etc.

Condition

Conditional Probability Distribution

Probability of Joining the Queue (p) Probability of Balking (1-p)
Queue Length <= 4 1.00 0
5<=Queue Length <= 10 0.7 0.3
Queue Length > 10 0.2 0.8

Prof Mooeini Sim Chart

About Dr. Moeeni:

Dr. Farhad Moeeni is professor of Computer and Information Technology and the Founder of the Laboratory for the Study of Automatic Identification at Arkansas State University. He holds a M.S. degree in industrial engineering and a Ph.D. in operations management and information systems, both from the University of Arizona.

His articles have been published in various scholarly outlets including Decision Sciences Journal, International journal of Production Economics, International Journal of Production Research, International Transactions in Operational Research, Decision Line, and several others. He has also co-authored two book chapters on the subject of automatic identification with applications in cyber logistics and e-supply chain management along with several study books in support of various textbooks. .

He is a frequent guest lecturer on the subject of information systems at the “Centre Franco Americain”, University of Caen, France.

Current research interests are primarily in the design, analysis and implementation of automatic identification for data quality and efficiency, RFID-based real-time location sensing with warehousing applications, and supply chain management. Methodological interests include design of experiments, simulation modeling and analysis, and other operations research techniques. He is one of the pioneers in instructional design and the teaching of automatic identification concepts within MIS programs and also is RFID+ certified.

Dr. Moeeni is currently the principle investigator of a multi-university research project funded by Arkansas Science and Technology Authority, Co-founder of Consortium for Identity Systems Research and Education (CISRE), and on the Editorial Board of the International Journal of RF Technologies: Research and Applications.

Contact Information

moeeni@astate.edu

Teaching Systems Analysis and Modeling

ProModel Guest Blogger: Robert Loomis, Ph.D. Adjunct Professor, Florida Institute of Technology; NASA (Retired)

Loomis

Robert Loomis, Ph.D.

I teach a number of courses for the Florida Institute of Technology, one of which (Systems Analysis and Modeling) is a 17 week graduate level survey course in Systems Analysis, various types of modeling and how the modeling fits into the SA process.  This course is designed to be “a mile wide and an inch deep” in that it introduces several topics that could, by themselves, be the subject of dedicated courses.

One of the challenges in teaching a course such as this (particularly in an MBA environment) is to find tools that are effective and demonstrate the concepts well without becoming bogged down in the mechanics of the tools employed.  It also helps if the students find them engaging to use.  I ended up writing some of my own applications for certain deterministic models in order to meet those requirements and to emphasize the concepts that I felt were important.

I chose ProModel to use as a simulation package for a number of reasons. It has:

  • A graphical User Interface that is attractive, easy to use, and (at least at the level my class uses) easy to learn.
  • Outstanding documentation.
  • An excellent Professor Package.
  • An excellent Student Package. It is modestly-priced and fully-featured (limited only by the size of the model that can be created).
  • A Workstation Simulator (added by ProModel this year) that is extremely useful for instructors and students.

I have also found the ProModel staff to be responsive, courteous, and willing to help with any issues that may arise. I believe ProModel recognizes that offering an excellent value and support in the teaching environment will pay long-term dividends as the students move into their professional environment, and I applaud ProModel for their insight.

About Robert Loomis

Robert Loomis received a BSEE from Michigan State University, and an MS and Ph.D. in Industrial Engineering from Texas A&M University.  For the last 30 years he has worked for NASA and the United Space Alliance (USA) in the space and aerospace environment as a safety and reliability expert. His NASA positons included Chairman of the Kennedy Space Center (KSC) Safety Engineering Review Panel, Chairman of the KSC Ground Risk Review Panel, Manager of Data Systems at NASA Headquarters, Deputy Director of Safety at Dryden Flight Research Center (DFRC), and Head of the Independent Technical Authority at DFRC. He held numerous positions with USA, culminating in Corporate Director of Mission Assurance.  Dr. Loomis’ recognitions include the NASA QASAR Award, the NASA Exceptional Public Service Medal the Astronauts Silver Snoopy Award; the IEEE Millennium Medal; IEEE Reliability Society Lifetime Achievement Award; and Leadership and Teamwork Awards from the United Space Alliance.  He is a Senior Member of the IEEE and a Fellow of the Society of Reliability Engineers. He is an adjunct professor at Florida Tech; and most importantly, a Full-Time Grandfather to the three nicest, smartest, and best-looking grandchildren on the planet.

Power of Predictive Analytics for Healthcare System Improvement and Patient Flow

Hospitals are currently under intense pressure to simultaneously improve the effectiveness and efficiency of healthcare delivery in an environment where operating costs are being reduced, downsizing and consolidation is the norm, and cost for care is increasing while revenue is decreasing.  At the same time the systemic effects of peak census and varying demand on patient LOS are creating capacity issues and unacceptable patient wait times…leading to a major decline in patient satisfaction.

The amount of proposals to enhance a hospitals quality care are as numerous as the healthcare professionals dedicated to the cause.  What hospitals need however is the ability to quickly and accurately evaluate the impact of those various operational proposals and to experiment with system behavior without disrupting the actual system – and ProModel’s simulation technology is allowing them to do just that.

The predictive analytic capability of ProModel simulation will allow healthcare professionals to test assumptions and answer those patient flow “what if” questions in a matter of minutes and days, not weeks and months.  Simply put, it’s providing a decision support system to assist healthcare leaders in making critical decisions quickly with a higher degree of accuracy and confidence.

Simulation will also help healthcare staff quickly identify room availability and recognize high risk patient flow bottlenecks before extreme problems occur.  This invaluable knowledge will then lead to reductions in patient wait times and LOS, avoid unnecessary re-admissions and costly expansions, and most importantly – increase the overall quality of service and patient satisfaction.

Happy Holidays!

President & CEO ProModel Corporation

Keith Vadas – President & CEO ProModel Corporation

The ProModel family would like to wish everyone a very joyous holiday season and a prosperous 2015!  We thank you for all your support and business this past year.  As always, our goal is to help you meet or exceed your performance goals.  We hope that our people and solutions were able to assist you in that endeavor this past year.

2014 was a busy year for ProModel filled with exciting new products like Process Simulator Pro, revamped new releases of ProModel, MedModel and Enterprise Portfolio Simulator, and of course our custom solutions designed for a host of clients across all industries. As most of you know, we have an extraordinary team of consultants and software developers always available to help your organization meet the next business challenge. Looking ahead, 2015 is shaping up to be another BIG year here at ProModel as we continue to develop new products including Healthcare solutions and other business improvement tools. 

Thank you, and I wish you and your families a happy holiday and a joyful New Year.