Top 8 Benefits of Proactive Patient Flow Optimization

DanH avatar_34902-300x300

Dan Hickman ProModel CTO

Unpredictably high numbers of scheduled admissions and an uncertain number of available beds.

Stressed staff due to ED boarding, long patient wait times, and off-service placements.

Length of stay and cost per case metrics exceed CMS value-based care efficiency measures.

Sound familiar? 

Patient flow optimization is one of the most cost-effective ways to improve operational effectiveness, the patient stay experience and your hospital’s bottom line. Here’s how.

Top 8 Reasons to Implement Patient Flow Optimization Today

  1. Decrease the Length of Stay (LOS). Find “hidden discharges” (potential candidates for discharge based on diagnosis codes and average LOS metrics) in your current census.
  2. Improve Bottleneck and ADT Issue Visibility. Simply having data does not empower decision makers. In fact, too much data can cause clinical operations staff to ignore it altogether. A patient flow optimization system delivers visual data all hospital staff can easily digest and use to make informed decisions that benefit the hospital and the patients.
  3. Right-size Staffing. By coupling accurate census predictions with staff needs, your health system will experience lower labor costs based on predictable admit, discharge and transfer (ADT) cycles, optimal staffing sizes and diminished demand for expensive nursing agency personnel.
  4. Enhance the Patient Journey. Minimize patient frustration by admitting the vast majority of inpatients to on-service units, even during peak periods.
  5. Capture Additional Revenue. Decreasing length of stay increases bed capacity, so fewer patients leave the hospital without being seen.
  6. Increase Access to Care. Patient flow optimization decreases ED boarding duration, speeds up admissions, and lowers left without being seen (LWBS) rates.
  7. Lower Infrastructure Costs. With patient flow optimization, health systems make optimal use of the existing hospital’s physical footprint, avoiding unnecessary costly build outs.
  8. Staff Satisfaction. Welcome to the stress-free huddle. FutureFlow Rx gives your staff a personal heads-up on issues affecting admissions, discharges and transfers, so they can be addressed at huddle meetings. Prescriptive corrective actions from the patient flow optimization system further empower staff with recommendations based on data and simulation.

 

About FutureFlow Rx™ Patient Flow Optimization

FutureFlow Rx by ProModel uses historical patient flow patterns, real-time clinical data, and discrete event simulation to reveal key trends, provide operational insights, and deliver specific corrective action recommendations to enhance the patient stay experience, lower costs and drive additional revenues. Our platform accurately predicts future events, helping hospitals make the right operational decisions to reduce risk, decrease LOS and improve operational margins. Schedule a demo.

dashboard 300 dpi

 FutureFlow Rx’s dashboard consists of  key performance indicator (KPI) “cards”. The left side of each card shows the last 24 hours; the right side predicts the “Next 24”; and clicking the upper right “light bulbs” provides prescriptive actions to improve the predicted future.

 

Happy Holidays

Keith Vadas

Keith Vadas President & CEO 

The ProModel family would like to wish everyone a very joyous holiday season!  We thank you for all your support and business this past year and we look forward to helping you meet or exceed your performance goals in 2016!

As most of you know, we have an extraordinary team of consultants, software developers, and technical support always available to help your organization meet the next business challenge. Looking ahead to 2016, we anticipate another exciting year as we plan to launch new products and expand our current solutions.

Thank you, and I wish you and your families a Happy Holiday and a joyful New Year.

Keith Vadas

President & CEO
ProModel Corporation

One of ProModel’s Biggest Supporters Reflects on a Career in Academic Optimization!

ProModel Guest Blogger:  Linda Ann Riley, Ph.D., Adjunct Professor of Engineering, University of New Haven; former Associate Dean and recently retired professor from the School of Engineering, Computing and Construction Management at Roger Williams University.

Riley photo

Linda Ann Riley, Ph.D.

When Sandra Petty, Academic Coordinator at ProModel Corporation, invited me to contribute to ProModel’s guest blog, it gave me an opportunity to reflect on an academic career with one ever present constant, the ProModel’s suite of simulation software products.  My Universities may have changed, yet each year for the past twenty or so I have taught at least one, (many times far more) discrete-event simulation courses to an undergraduate, graduate, corporate or government audience.  Regardless of the class, a Ph.D. or a freshman undergraduate, I have continued to use ProModel since its early days as one of the first Window’s based simulation products.  As ProModel Corporation has introduced new products, MedModel, ServiceModel, Process Simulator and Portfolio Simulator, my students have had an invaluable opportunity to be exposed to some of the best simulation products in the industry.

Each simulation class that I teach involves an external project where students work with non-proprietary data from industry, government or non-profit entities. Working only with the ProModel Student Package, I have seen some of the most impactful and innovative uses of ProModel simulation software. From modeling casino floor slot machine layout to nuclear reactor evacuation scenarios, the variety of applications for the software has been virtually limitless.  The simulation skillset acquired by students is one of the primary factors companies have cited when hiring students with ProModel experience.  Through the years, the aerospace, health care, automotive, logistics and defense industries have identified significant value in students graduating with exposure to ProModel’s suite of products.

I too, have benefited from using ProModel software.  For my entire career, my research has focused on productivity/process analysis and optimization.  For the past twenty years, ProModel software has played a central role as an application tool for this research.  As ProModel Corporation has evolved with additional products and capabilities, so too has my research.  In the early years, I focused on health care process and facility layout improvement using MedModel to simulate patient queuing alternatives, throughput strategies and identification of system waste. From there, my research moved to rare event simulation such as security breaches, hazardous materials transportation incidents and hybrid simulation that incorporated both a discrete-event and continuous element.  At that time, I used external code and output from other programs as inputs to ProModel. During this period of research, I also focused with Ph.D. students on new approaches to multi-objective evolutionary algorithms as well as meta-heuristics for optimizing large-scale discrete-event simulations using SimRunner as a starting point.

More recently, my research has concentrated on managing and controlling risk in complex infrastructure projects using discrete-event simulation for stochastic scheduling.   In the construction industry, traditional project management and scheduling approaches for highly-complex construction projects typically use methods such as CPM (critical path method), PERT (program evaluation and review technique) or Monte Carlo simulation. For the most part, these methods rely on deterministic, tractable mathematical models underlying the schedule. The ability to accurately predict project schedule outcome and manage performance volatility is essential to controlling risk.  Prior to ProModel Corporation introducing Project and Portfolio Simulator, I would simulate the stochastic nature of these schedules in ProModel.

Even though I have recently retired from a full-time academic career, I will continue to teach discrete-event simulation using ProModel in an adjunct faculty capacity.  Looking to the future, my research will focus primarily on the incorporation and design of intelligent interfaces that identify and apply algorithms for the optimization problem and constraints under study. This implies perhaps an additional layer of code incorporated into the optimization process. Ultimately, this intelligent interface could “learn” to recognize common optimization scenarios, select starting and stopping rules, and potentially also interface with the system improvement framework.

As a further extension to the intelligent interface, dynamic algorithmic visualization capabilities might be incorporated into the optimization procedures.  Immersive technologies are used in many simulation arenas.  Incorporating immersive visualization into optimization would serve to bring a transparency between the modeling and optimization processes. This would allow users and decision makers to interactively view, and potentially redirect the optimization process. In essence, this feature would provide the decision maker the ability to immerse him or herself into the model, thus “directing” both the simulation and optimization processes.

In retrospect, discrete-event simulation and the ProModel Corporation have played a central role in my development as both a teacher and researcher.  I look forward to what the future holds for both the company and the field of discrete-event simulation.

About Dr. Linda Ann Riley

Contact Information: linda.ann.riley@gmail.com

Linda Ann Riley, Ph.D. presently serves as an Adjunct Professor of Engineering for the University of New Haven’s graduate program in Engineering and Operations Management. She recently retired as full professor from the School of Engineering, Computing and Construction Management at Roger Williams University (RWU) where she worked for twelve years. At RWU, she held the positions of Associate Dean, Engineering Program Coordinator and Professor of Engineering. She has over thirty years of teaching experience in both engineering and business and is the recipient of a number of corporate, university and national excellence in teaching awards. Dr. Riley is the author/co-author of over 100 articles, technical and research reports, and book contributions. Her area of scholarly interest involves the optimization of stochastic systems using simulation and evolutionary algorithms.

In addition, Dr. Riley is an active researcher with notable success in grant writing, grant and contract management, creating collaborative research partnerships and research administration. She is responsible for developing and writing over 150 competitive research/consulting proposals and has been awarded or procured contracts for clients in excess of twenty-five million dollars. Prior to her position at Roger Williams University, Dr. Riley spent 17 years at New Mexico State University (NMSU) holding positions as Director of the University Center for Economic Development Research and Assistance, Assistant Director for the Center for Business Research and Services and Director of the Advanced Modeling and Simulation Laboratory. She also held faculty positions in both the Colleges of Business and Engineering at NMSU.

In addition to teaching and research, Dr. Riley is active in consulting. She has extensive consulting experience in organizational productivity/process improvement implementing six sigma, lean, system dynamics, simulation and optimization approaches. She has extensive experience in the design, communication and implementation of strategic and economic development plans. Also, she worked for a number of years with the National Laboratories on technology commercialization strategies.

Dr. Riley is actively involved in attracting women and under-represented groups into science, engineering, mathematics and technology fields. She is a national speaker on the challenges of attracting women and under-represented groups into these fields and served as Chair of the American Society for Engineering Education Northeastern Section and National Chairperson of American Society of Mechanical Engineers Diversity Metrics Committee. Dr. Riley is a member of several professional business and engineering societies and has served as reviewer and/or editorial board member for business, healthcare and engineering journals.

Dr. Riley received her undergraduate degree from Boston University, earned an M.B.A from Suffolk University, completed a post-graduate fellowship at Brown University and earned her M.S. in Industrial Engineering and a Ph.D. in Business with a major field in Logistics from New Mexico State University. Also, for eleven years, Dr. Riley held the position of Vice-Chair of the Board for a large financial institution. In conjunction with this position, she completed 56 credits of Board of Directors courses and was awarded the Friedrich W. Raiffeisen and Edward W. Filene Awards.

Project Portfolio Management Made Easy!

In this 3 minute overview of Portfolio Scheduler, one of the many capabilities within Enterprise Portfolio Simulator (EPS), Dave Higgins demonstrates how this innovative function allows you to recognize resource supply/demand constraints and reveal alternative portfolio delivery options.  Check it out!

To learn more about Portfolio Scheduler contact Dave Higgins at:

dhiggins@promodel.com  

717 – 884 – 8002 

In the OR with Dale Schroyer

Dale%20Schroyer

Dale Schroyer – Sr. Consultant & Project Manager

I generally find that in healthcare, WHEN something needs to happen is more important than WHAT needs to happen.  It’s a field that is rife with variation, but with simulation, I firmly believe that it can be properly managed.  Patient flow and staffing are always a top concern for hospitals, but it’s important to remember that utilization levels that are too high are just as bad as levels that are too low, and one of the benefits of simulation in healthcare is the ability to staff to demand.

Check out Dale’s work with Robert Wood Johnson University Hospital where they successfully used simulation to manage increased OR patient volume: 

About Dale

Since joining ProModel in 2000, Dale has been developing simulation models used by businesses to perform operational improvement and strategic planning. Prior to joining ProModel Dale spent seven years as a Sr. Corporate Management Engineering Consultant for Baystate Health System in Springfield, MA where he facilitated quality improvement efforts system wide including setting standards and facilitating business re-engineering teams. Earlier he worked as a Project Engineer at the Hamilton Standard Division of United Technologies.

Dale has a BS in Mechanical Engineering from the University of Michigan and a Masters of Management Science from Lesley University. He is a certified Six Sigma Green Belt and is Lean Bronze certified.

NEW! ProModel’s Patient Flow Solution:

http://patientflowstudio.com/

ProModel Healthcare Solutions:

http://www.promodel.com/Industries/Healthcare

Simulation Ensures Patient Safety During Hospital Move

Northwest Community Hospital is an acute care hospital in Arlington Heights Illinois, right outside of Chicago.  The staff at NCH had the very complex and delicate task of arranging and accomplishing the move of 150 patients over to a newly constructed facility on campus.  This is a welcome but difficult situation that many healthcare organizations find themselves in today as technology improvements and rising patient populations demand growth.

See how NCH achieved a flawless transition through predictive analytics and simulation:

Power of Predictive Analytics for Healthcare System Improvement and Patient Flow

Hospitals are currently under intense pressure to simultaneously improve the effectiveness and efficiency of healthcare delivery in an environment where operating costs are being reduced, downsizing and consolidation is the norm, and cost for care is increasing while revenue is decreasing.  At the same time the systemic effects of peak census and varying demand on patient LOS are creating capacity issues and unacceptable patient wait times…leading to a major decline in patient satisfaction.

The amount of proposals to enhance a hospitals quality care are as numerous as the healthcare professionals dedicated to the cause.  What hospitals need however is the ability to quickly and accurately evaluate the impact of those various operational proposals and to experiment with system behavior without disrupting the actual system – and ProModel’s simulation technology is allowing them to do just that.

The predictive analytic capability of ProModel simulation will allow healthcare professionals to test assumptions and answer those patient flow “what if” questions in a matter of minutes and days, not weeks and months.  Simply put, it’s providing a decision support system to assist healthcare leaders in making critical decisions quickly with a higher degree of accuracy and confidence.

Simulation will also help healthcare staff quickly identify room availability and recognize high risk patient flow bottlenecks before extreme problems occur.  This invaluable knowledge will then lead to reductions in patient wait times and LOS, avoid unnecessary re-admissions and costly expansions, and most importantly – increase the overall quality of service and patient satisfaction.

Teaching Process Management Using ProModel

ProModel Guest Blogger:  Scott Metlen, Ph.D. – Business Department Head and Associate Professor at University of Idaho

Scott Metlen, Ph.D.

Scott Metlen, Ph.D.

Understanding process management, the design, implementation, management and control, and continuous improvement of the enterprise wide set of an organizations processes is the key to well deployed strategies. It was not until Tim Cook made Apple’s total set of processes world class including all supply chain linked processes (Brownlee, 2012) that Apple hit its amazing climb to become the world’s highest valued company; even though the company had cutting edge products before his arrival. Gaining effective understanding of process management is not easy due to the strategic variability inherent in the portfolio of products that companies sell, and in markets they service. This strategic variability (Rajan, 2011) in turn drives variability in many processes that an organization uses to operate. For instance, different markets require different marketing plans supported by different processes.  Order processes often vary by product and target market. Employee skill sets differ by product requiring different hiring and training processes. Different products, whether it be services or goods that have a slight variation require, at the very least, an adjustment to the production process. Adding to, and often caused by the variability just mentioned, are multiple process steps, each with different duration times and human resource skills.  Depending on what product is currently being produced, process steps, process step order and duration time, interdependency between the process steps, and business rules all vary. Where a product is in its life cycle will drive the experience curve, again creating variation across products. In addition, the numerous interfaces with other processes all vary depending on the product being produced. All of these sources of variability can make process management hard to do, teach, and learn. One tool that helps with process management in the face of variance is discrete event simulation and one of the best software suites to use is ProModel. ProModel is a flexible program with excellent product support from the company.

Effective process management is a multi-step process. The first step of process management is to determine the process flow while at the same time determining the value and non-value added process steps. Included in the process flow diagram for each step are the duration times by product and resources needed at each step, and product routes. Also needed at this time are business rules governing the process such as working hours, safety envelopes, quality control, queueing rules, and many others. Capturing this complex interrelated system begins by visiting the process and talking with the process owner and operators. Drawing the diagram and listing other information is a good second step, but actually building and operating the process is when a person truly understands the process and its complexities.  Of course many of the processes we want to improve are already built and are in use. In most cases, students will not be able to do either of these. However, building a verified and validated simulation model is a good proxy for doing the real thing, as the model will never validate against the actual process output unless all of the complexity is included or represented in the model. In the ‘Systems and Simulation’ course at the University of Idaho students first learn fundamentals of process management including lean terms and tools. Then they are given the opportunity to visit a company in the third week of class as a member of a team to conduct a process improvement project. In this visit students meet the process owner and operators. If the process is a production process, they walk the floor and discuss the process and the delta between expected and actual output. If the process is an information flow process, such as much of an order process, the students discuss the process and, again, the delta between expected and realized output. Over the next six weeks students take the preliminary data and begin to build a simulation model of the current state of the process. During this time period students discover that they do not have all the data and information they need to replicate the actual process. In many cases they do not have the data and/or information because the company does not have that information or how the model is operated is not the same as designed. Students then have to contact the process owner and operators throughout the six weeks to determine the actual business rules used and/or make informed assumptions to complete their model.

Once the model has been validated and the students have a deep understanding of the process, students start modeling process changes that will eliminate waste in the system, increase output, and decrease cost. Examples of methods used to improve the process include changing business rules, adding strategically placed buffers and resources, and reallocating resources. To determine the most effective way to improve the process, a cost benefit analysis in the form of an NPV analysis is completed. The students use the distribution of outputs from the original model to generate appropriate output and then compare that output to output pulled from the distributions of each improvement scenario. This comparison is then used to determine a 95% confidence interval for the NPV and the probability of the NPV being zero or less. Finally, several weeks before the semester is finished, students travel to the company to present their findings and recommendations.

Student learning on these projects is multifaceted. Learning how to use ProModel is the level that the students are most aware of during the semester, as it takes much of their time. However, by the end of the semester they talk about improving their ability to manage processes, work in teams, deal with ambiguity, manage multiple projects, present to high level managers, and maintain steady communication with project owners.

Utilizing external projects and discrete event simulation to teach process management has been used in the College of Business and Economics at the University of Idaho for the past six years. As a result, the Production and Operation area has grown from 40 to 150 students and from five to 20 projects per semester. More importantly, students who complete this course are being sought out and hired by firms based on the transformational learning and skill sets students acquired through the program.

References:

Rajan Suri. Beyond Lean: It’s About Time. 2011 Technical Report, Center for Quick Response Manufacturing, University of Wisconsin-Madison.

Brownlee, John. Apples’s Secret Weapon 06/13/2012. http://www.cnn.com/2012/06/12/opinion/brownlee-apple-secret/index.html?hpt=hp_t2. 12/301/2014.

Scott Metlen Bio:

http://www.uidaho.edu/cbe/business/scottmetlen

 

Happy Holidays!

President & CEO ProModel Corporation

Keith Vadas – President & CEO ProModel Corporation

The ProModel family would like to wish everyone a very joyous holiday season and a prosperous 2015!  We thank you for all your support and business this past year.  As always, our goal is to help you meet or exceed your performance goals.  We hope that our people and solutions were able to assist you in that endeavor this past year.

2014 was a busy year for ProModel filled with exciting new products like Process Simulator Pro, revamped new releases of ProModel, MedModel and Enterprise Portfolio Simulator, and of course our custom solutions designed for a host of clients across all industries. As most of you know, we have an extraordinary team of consultants and software developers always available to help your organization meet the next business challenge. Looking ahead, 2015 is shaping up to be another BIG year here at ProModel as we continue to develop new products including Healthcare solutions and other business improvement tools. 

Thank you, and I wish you and your families a happy holiday and a joyful New Year.

 

Team ProModel Conquers Ragnar Once Again!

Team ProModel at the Finish Line

Team ProModel at the Finish Line

The 2014 Ragnar Relay Recap…according to Jay Wisnosky, Tim Shelton, and Pat Sullivan

So there’s this event  where 12 people team together, split up runners into two separate vans and then run a 200 mile relay. It’s called the Ragnar Relay.  Yes, that’s how it first gets explained to you…

Then you get more information like, “you’ll have to run about 15-18 miles tops. It’s tough and there’s a lot of hills, but it’s a lot of fun.”  Fun?

https://www.ragnarrelay.com/

“12 friends, 2 vans, 2 days, 1 night, 200 mile relay…unforgettable stories.”  This is Ragnar. Pat Sullivan’s blog about Ragnar began with this quote last year, and I think it summarizes the event for the rest of us still.

But to get a true picture of Ragnar, you really have to put yourself in a white, 15 person passenger van with 5 other people. It’s close quarters in there. It goes from clean one minute to trashed the next and never smells good or is quiet enough to sleep. Some people are your co-workers, some are friends, and some are complete strangers. You then have to imagine you are about run anywhere from 4 to 8 miles – it’s now YOUR turn. Whatever routine you had to get ready to run at home is gone…replace that with stretching in a van surrounded by running shoes and gym bags. This is when you start to get nervous because you’re in unfamiliar territory, you’re excited, but also tired, and there’s a good chance you have to go to the bathroom from all that water you’ve been drinking. This is when you hope you trained enough. This is when you tell yourself that after this leg, you still have two more to go…and you probably won’t be sleeping between them. This is when you say, “what did I get myself….” and then one of your teammates asks, “what do you need? Some water? Something to eat.” And you relax, knowing that the collection of people in that van are with you -they have your back and will help you through it, even if you are wishing you trained for this a lot harder than you actually did.

Kelly handing off to Jason

Kelly handing off to Jason

Another year, another ProModel Ragnar team built on commitment, dedicated teamwork and a great mixture of veteran leadership and new, eager faces.  From October  24-26, Team ProModel meshed as a team in one of America’s most grueling endurance races. The Chattanooga to Nashville Ragnar Relay undoubtedly demanded an often extraordinary level of dedication and sacrifice.  The twelve person 2014 team consisted of team captain Tim Shelton, (ProModel Sr Army Program Manager), Pat Sullivan (ProModel VP for Army Programs),  Dan Hickman (ProModel CTO), Clay Gifford (ProModel Developer for DST), Jay Wisnosky (ProModel Technical Writer for DST) Brian Brown, Susan Whitehead, Sheri Shamwell, Mickelle Penn, Kelly Parker,  Lisa Reyes and Jason Mcormick.  And of course, with a great deal of support and commitment from Keith Vadas and Carl Napoletano…and the incredible effort of Christine Bunker (ProModel marketing) and                                                         our awesome driver (Chief Reyes).

Lisa Reyes kicked off Race day at 07:30 Friday morning at a beautiful waterfront setting on the Tennessee River in Chattanooga.  Each runner was scheduled to follow for three legs during the estimated 34 hours to complete the race.  We planned for each of our 12 runners to complete 16-19 miles each.  The two vans of Team ProModel met briefly through the race, with 5 intersection points where the baton was handed over from one van to the next.

Lisa Reyes going uphill

Lisa Reyes going uphill

Miles and miles passed with each runner facing his or her own set of obstacles. Some ran steep hills (Brian Brown climbed 1300 feet in elevation over 8+ miles with his first leg), or through the wee hours of the night with the sounds of dogs barking (and growling sound machines coming from another van) as Mike Penn would come to experience. Others came down the other side of those steep hills and endured the bright autumn mid afternoon sun – which Pat Sullivan can now vouch that 9 miles of beautiful Tennessee countryside is sometimes blurred by surprising heat.  However, Team ProModel banded together to support each other, as well as other runners from other teams.

 

 

Dan Hickman feeling strong...on his first leg

Dan Hickman feeling strong…on his first leg

There were plenty of laughs in between – often times over snack choices, foot odor, getting passed on the course by 12 year olds, bathroom strategies, sore muscles that make you walk funny, and delusions caused by lack of sleep. We spotted the little known Ragnasaurus, our vans were “branded” with magnets and paint from other teams, some people gained nicknames, and we all learned the value of fast restaurant service and having a bed instead of a gym floor to rest.

Team ProModel made it 198 miles through the mountains, into the rolling hills of Tennessee and eventually to the Music City that is, Nashville. This group grew to become teammates and friends, after starting out with one common goal in mind – just run and have fun! Thanks again for the great support and allowing us to represent ProModel…know you would have been proud.

Susan Whitehead with the Ragnar Bear

Susan Whitehead with the Ragnar Bear

Tim Shelton running his last leg

Tim Shelton running his last leg

 

 

 

 

Lisa Reyes, Brian Brown, Dan Hickman, Tim Shelton, Kelly Parker

Lisa Reyes, Brian Brown, Dan Hickman, Tim Shelton, Kelly Parker  

Knight Runner

Knight Runner

Dan Hickman, Clay Gifford, Pat Sullivan, Tim Shelton, Jay Wisnosky

Dan Hickman, Clay Gifford, Pat Sullivan, Tim Shelton, Jay Wisnosky

Dan Hickman hands off to Tim Shelton

Dan Hickman hands off to Tim Shelton

Team ProModel 2014