Top 8 Benefits of Proactive Patient Flow Optimization

DanH avatar_34902-300x300

Dan Hickman ProModel CTO

Unpredictably high numbers of scheduled admissions and an uncertain number of available beds.

Stressed staff due to ED boarding, long patient wait times, and off-service placements.

Length of stay and cost per case metrics exceed CMS value-based care efficiency measures.

Sound familiar? 

Patient flow optimization is one of the most cost-effective ways to improve operational effectiveness, the patient stay experience and your hospital’s bottom line. Here’s how.

Top 8 Reasons to Implement Patient Flow Optimization Today

  1. Decrease the Length of Stay (LOS). Find “hidden discharges” (potential candidates for discharge based on diagnosis codes and average LOS metrics) in your current census.
  2. Improve Bottleneck and ADT Issue Visibility. Simply having data does not empower decision makers. In fact, too much data can cause clinical operations staff to ignore it altogether. A patient flow optimization system delivers visual data all hospital staff can easily digest and use to make informed decisions that benefit the hospital and the patients.
  3. Right-size Staffing. By coupling accurate census predictions with staff needs, your health system will experience lower labor costs based on predictable admit, discharge and transfer (ADT) cycles, optimal staffing sizes and diminished demand for expensive nursing agency personnel.
  4. Enhance the Patient Journey. Minimize patient frustration by admitting the vast majority of inpatients to on-service units, even during peak periods.
  5. Capture Additional Revenue. Decreasing length of stay increases bed capacity, so fewer patients leave the hospital without being seen.
  6. Increase Access to Care. Patient flow optimization decreases ED boarding duration, speeds up admissions, and lowers left without being seen (LWBS) rates.
  7. Lower Infrastructure Costs. With patient flow optimization, health systems make optimal use of the existing hospital’s physical footprint, avoiding unnecessary costly build outs.
  8. Staff Satisfaction. Welcome to the stress-free huddle. FutureFlow Rx gives your staff a personal heads-up on issues affecting admissions, discharges and transfers, so they can be addressed at huddle meetings. Prescriptive corrective actions from the patient flow optimization system further empower staff with recommendations based on data and simulation.

 

About FutureFlow Rx™ Patient Flow Optimization

FutureFlow Rx by ProModel uses historical patient flow patterns, real-time clinical data, and discrete event simulation to reveal key trends, provide operational insights, and deliver specific corrective action recommendations to enhance the patient stay experience, lower costs and drive additional revenues. Our platform accurately predicts future events, helping hospitals make the right operational decisions to reduce risk, decrease LOS and improve operational margins. Schedule a demo.

dashboard 300 dpi

 FutureFlow Rx’s dashboard consists of  key performance indicator (KPI) “cards”. The left side of each card shows the last 24 hours; the right side predicts the “Next 24”; and clicking the upper right “light bulbs” provides prescriptive actions to improve the predicted future.

 

Happy Holidays

Keith Vadas

Keith Vadas President & CEO 

The ProModel family would like to wish everyone a very joyous holiday season!  We thank you for all your support and business this past year and we look forward to helping you meet or exceed your performance goals in 2016!

As most of you know, we have an extraordinary team of consultants, software developers, and technical support always available to help your organization meet the next business challenge. Looking ahead to 2016, we anticipate another exciting year as we plan to launch new products and expand our current solutions.

Thank you, and I wish you and your families a Happy Holiday and a joyful New Year.

Keith Vadas

President & CEO
ProModel Corporation

One of ProModel’s Biggest Supporters Reflects on a Career in Academic Optimization!

ProModel Guest Blogger:  Linda Ann Riley, Ph.D., Adjunct Professor of Engineering, University of New Haven; former Associate Dean and recently retired professor from the School of Engineering, Computing and Construction Management at Roger Williams University.

Riley photo

Linda Ann Riley, Ph.D.

When Sandra Petty, Academic Coordinator at ProModel Corporation, invited me to contribute to ProModel’s guest blog, it gave me an opportunity to reflect on an academic career with one ever present constant, the ProModel’s suite of simulation software products.  My Universities may have changed, yet each year for the past twenty or so I have taught at least one, (many times far more) discrete-event simulation courses to an undergraduate, graduate, corporate or government audience.  Regardless of the class, a Ph.D. or a freshman undergraduate, I have continued to use ProModel since its early days as one of the first Window’s based simulation products.  As ProModel Corporation has introduced new products, MedModel, ServiceModel, Process Simulator and Portfolio Simulator, my students have had an invaluable opportunity to be exposed to some of the best simulation products in the industry.

Each simulation class that I teach involves an external project where students work with non-proprietary data from industry, government or non-profit entities. Working only with the ProModel Student Package, I have seen some of the most impactful and innovative uses of ProModel simulation software. From modeling casino floor slot machine layout to nuclear reactor evacuation scenarios, the variety of applications for the software has been virtually limitless.  The simulation skillset acquired by students is one of the primary factors companies have cited when hiring students with ProModel experience.  Through the years, the aerospace, health care, automotive, logistics and defense industries have identified significant value in students graduating with exposure to ProModel’s suite of products.

I too, have benefited from using ProModel software.  For my entire career, my research has focused on productivity/process analysis and optimization.  For the past twenty years, ProModel software has played a central role as an application tool for this research.  As ProModel Corporation has evolved with additional products and capabilities, so too has my research.  In the early years, I focused on health care process and facility layout improvement using MedModel to simulate patient queuing alternatives, throughput strategies and identification of system waste. From there, my research moved to rare event simulation such as security breaches, hazardous materials transportation incidents and hybrid simulation that incorporated both a discrete-event and continuous element.  At that time, I used external code and output from other programs as inputs to ProModel. During this period of research, I also focused with Ph.D. students on new approaches to multi-objective evolutionary algorithms as well as meta-heuristics for optimizing large-scale discrete-event simulations using SimRunner as a starting point.

More recently, my research has concentrated on managing and controlling risk in complex infrastructure projects using discrete-event simulation for stochastic scheduling.   In the construction industry, traditional project management and scheduling approaches for highly-complex construction projects typically use methods such as CPM (critical path method), PERT (program evaluation and review technique) or Monte Carlo simulation. For the most part, these methods rely on deterministic, tractable mathematical models underlying the schedule. The ability to accurately predict project schedule outcome and manage performance volatility is essential to controlling risk.  Prior to ProModel Corporation introducing Project and Portfolio Simulator, I would simulate the stochastic nature of these schedules in ProModel.

Even though I have recently retired from a full-time academic career, I will continue to teach discrete-event simulation using ProModel in an adjunct faculty capacity.  Looking to the future, my research will focus primarily on the incorporation and design of intelligent interfaces that identify and apply algorithms for the optimization problem and constraints under study. This implies perhaps an additional layer of code incorporated into the optimization process. Ultimately, this intelligent interface could “learn” to recognize common optimization scenarios, select starting and stopping rules, and potentially also interface with the system improvement framework.

As a further extension to the intelligent interface, dynamic algorithmic visualization capabilities might be incorporated into the optimization procedures.  Immersive technologies are used in many simulation arenas.  Incorporating immersive visualization into optimization would serve to bring a transparency between the modeling and optimization processes. This would allow users and decision makers to interactively view, and potentially redirect the optimization process. In essence, this feature would provide the decision maker the ability to immerse him or herself into the model, thus “directing” both the simulation and optimization processes.

In retrospect, discrete-event simulation and the ProModel Corporation have played a central role in my development as both a teacher and researcher.  I look forward to what the future holds for both the company and the field of discrete-event simulation.

About Dr. Linda Ann Riley

Contact Information: linda.ann.riley@gmail.com

Linda Ann Riley, Ph.D. presently serves as an Adjunct Professor of Engineering for the University of New Haven’s graduate program in Engineering and Operations Management. She recently retired as full professor from the School of Engineering, Computing and Construction Management at Roger Williams University (RWU) where she worked for twelve years. At RWU, she held the positions of Associate Dean, Engineering Program Coordinator and Professor of Engineering. She has over thirty years of teaching experience in both engineering and business and is the recipient of a number of corporate, university and national excellence in teaching awards. Dr. Riley is the author/co-author of over 100 articles, technical and research reports, and book contributions. Her area of scholarly interest involves the optimization of stochastic systems using simulation and evolutionary algorithms.

In addition, Dr. Riley is an active researcher with notable success in grant writing, grant and contract management, creating collaborative research partnerships and research administration. She is responsible for developing and writing over 150 competitive research/consulting proposals and has been awarded or procured contracts for clients in excess of twenty-five million dollars. Prior to her position at Roger Williams University, Dr. Riley spent 17 years at New Mexico State University (NMSU) holding positions as Director of the University Center for Economic Development Research and Assistance, Assistant Director for the Center for Business Research and Services and Director of the Advanced Modeling and Simulation Laboratory. She also held faculty positions in both the Colleges of Business and Engineering at NMSU.

In addition to teaching and research, Dr. Riley is active in consulting. She has extensive consulting experience in organizational productivity/process improvement implementing six sigma, lean, system dynamics, simulation and optimization approaches. She has extensive experience in the design, communication and implementation of strategic and economic development plans. Also, she worked for a number of years with the National Laboratories on technology commercialization strategies.

Dr. Riley is actively involved in attracting women and under-represented groups into science, engineering, mathematics and technology fields. She is a national speaker on the challenges of attracting women and under-represented groups into these fields and served as Chair of the American Society for Engineering Education Northeastern Section and National Chairperson of American Society of Mechanical Engineers Diversity Metrics Committee. Dr. Riley is a member of several professional business and engineering societies and has served as reviewer and/or editorial board member for business, healthcare and engineering journals.

Dr. Riley received her undergraduate degree from Boston University, earned an M.B.A from Suffolk University, completed a post-graduate fellowship at Brown University and earned her M.S. in Industrial Engineering and a Ph.D. in Business with a major field in Logistics from New Mexico State University. Also, for eleven years, Dr. Riley held the position of Vice-Chair of the Board for a large financial institution. In conjunction with this position, she completed 56 credits of Board of Directors courses and was awarded the Friedrich W. Raiffeisen and Edward W. Filene Awards.

Project Portfolio Management Made Easy!

In this 3 minute overview of Portfolio Scheduler, one of the many capabilities within Enterprise Portfolio Simulator (EPS), Dave Higgins demonstrates how this innovative function allows you to recognize resource supply/demand constraints and reveal alternative portfolio delivery options.  Check it out!

To learn more about Portfolio Scheduler contact Dave Higgins at:

dhiggins@promodel.com  

717 – 884 – 8002 

In the OR with Dale Schroyer

Dale%20Schroyer

Dale Schroyer – Sr. Consultant & Project Manager

I generally find that in healthcare, WHEN something needs to happen is more important than WHAT needs to happen.  It’s a field that is rife with variation, but with simulation, I firmly believe that it can be properly managed.  Patient flow and staffing are always a top concern for hospitals, but it’s important to remember that utilization levels that are too high are just as bad as levels that are too low, and one of the benefits of simulation in healthcare is the ability to staff to demand.

Check out Dale’s work with Robert Wood Johnson University Hospital where they successfully used simulation to manage increased OR patient volume: 

About Dale

Since joining ProModel in 2000, Dale has been developing simulation models used by businesses to perform operational improvement and strategic planning. Prior to joining ProModel Dale spent seven years as a Sr. Corporate Management Engineering Consultant for Baystate Health System in Springfield, MA where he facilitated quality improvement efforts system wide including setting standards and facilitating business re-engineering teams. Earlier he worked as a Project Engineer at the Hamilton Standard Division of United Technologies.

Dale has a BS in Mechanical Engineering from the University of Michigan and a Masters of Management Science from Lesley University. He is a certified Six Sigma Green Belt and is Lean Bronze certified.

NEW! ProModel’s Patient Flow Solution:

http://patientflowstudio.com/

ProModel Healthcare Solutions:

http://www.promodel.com/Industries/Healthcare

Simulation Ensures Patient Safety During Hospital Move

Northwest Community Hospital is an acute care hospital in Arlington Heights Illinois, right outside of Chicago.  The staff at NCH had the very complex and delicate task of arranging and accomplishing the move of 150 patients over to a newly constructed facility on campus.  This is a welcome but difficult situation that many healthcare organizations find themselves in today as technology improvements and rising patient populations demand growth.

See how NCH achieved a flawless transition through predictive analytics and simulation:

Power of Predictive Analytics for Healthcare System Improvement and Patient Flow

Hospitals are currently under intense pressure to simultaneously improve the effectiveness and efficiency of healthcare delivery in an environment where operating costs are being reduced, downsizing and consolidation is the norm, and cost for care is increasing while revenue is decreasing.  At the same time the systemic effects of peak census and varying demand on patient LOS are creating capacity issues and unacceptable patient wait times…leading to a major decline in patient satisfaction.

The amount of proposals to enhance a hospitals quality care are as numerous as the healthcare professionals dedicated to the cause.  What hospitals need however is the ability to quickly and accurately evaluate the impact of those various operational proposals and to experiment with system behavior without disrupting the actual system – and ProModel’s simulation technology is allowing them to do just that.

The predictive analytic capability of ProModel simulation will allow healthcare professionals to test assumptions and answer those patient flow “what if” questions in a matter of minutes and days, not weeks and months.  Simply put, it’s providing a decision support system to assist healthcare leaders in making critical decisions quickly with a higher degree of accuracy and confidence.

Simulation will also help healthcare staff quickly identify room availability and recognize high risk patient flow bottlenecks before extreme problems occur.  This invaluable knowledge will then lead to reductions in patient wait times and LOS, avoid unnecessary re-admissions and costly expansions, and most importantly – increase the overall quality of service and patient satisfaction.