Ingalls Develops Automated Unit Lay-Down ‘Advisor’ with Capacity Planning Tool

Image_Ingalls from theSigal MagazineHuntington Ingalls Industries – Ingalls Shipbuilding (Ingalls) identified substantial savings potential in the lay-down placement and assignment process that had been previously utilized for managing asset location throughout the construction process.

Building four different hull forms in the tight shipyard footprint is a challenge. Ingalls Shipbuilding work instructions define the processes and responsibilities for the proper allocation and optimization of real estate (lay-down spaces) for structural units and assemblies under construction, while providing forward visibility for scheduled or potential overloads to capacity.

However, the old capacity planning processes were tedious and overly time-consuming. Resulting real estate allocations were seldom optimal and often required substantial rework to resolve space allocation conflicts, as the construction schedules for each hull form jockey for the same production resources.

The Ingalls team developed an automated process that optimizes unit layout and scheduling, and increases the construction of many units under a covered structure, significantly improving production rates—a plus in the hot southern climate.

“The new tool has taken a process that historically took 10 weeks to complete and can now finish the scheduling activity in less than an hour. Following project completion and full system implementation, we expect to reduce ‘real estate’ allocation processing time by 30% and place 20 more units ‘under cover’ annually, with an estimated cost savings of over $990K per year.”

 (Article Courtesy of “theSignal” and DefenseNews.com)

Click here to read the rest of the Ingalls story

Dr. Linda Ann Riley’s (Univ. New Haven) Innovative Teaching Approach for ProModel and Process Simulator (1 of 2)

Headshot_Linda Riley UNH

Dr. Linda Ann Riley Ph.D. UNH

I have been teaching ProModel for the past 20 years and most recently in the capstone simulation course in the University of New Haven’s (UNH) M.S. in Engineering and Operations Management (MSEOM) program.  In the course immediately preceding simulation, Six Sigma Quality Planning, I use both Microsoft Visio and Minitab as the software programs for course delivery.  This brings me to the topic of this blog post: my experiences this past Spring introducing Process Simulator into the ProModel /Visio/ Minitab mix.

 

In a traditional semester setting, teaching four different software programs in addition to subject matter content could be achievable. But the University of New Haven’s MSEOM is delivered in an accelerated format with each class meeting six hours on one evening each week over seven weeks. The final two classes in the program are Six Sigma Quality Planning and Simulation Techniques and Applications.  During these final two classes over 14 weeks, students also undertake a technical capstone project that fulfills a graduation requirement.

The UNH MSEOM is directed to individuals with technical undergraduate degrees presently holding middle to upper level management positions.  Almost all of the participants in the cohort work in engineering related jobs at large organizations such as General Dynamics, Amgen, Pratt & Whitney, Lockheed Martin, Pfizer and General Electric to name a few.  Fortunately, I have always had highly motivated students in each cohort I have taught over the past 10 years.

From day one of the Six Sigma class, three programs were introduced, Visio, Minitab and Process Simulator.  I use Lean Six Sigma and Minitab (5th Edition): The Complete Toolbox Guide for Business Improvement by Quentin Brook as the text for the class.  Teaching for six hours per class requires a pedagogical strategy of moving from content delivery to computer exercises and back multiple times during the class.  This strategy has been highly effective over the years and allows for reinforcement of the subject matter and in-class practice and troubleshooting using software.

Since most of the cohort had at least minimal exposure to Visio in the workplace, introducing Process Simulator proved to be rather seamless.  The Quickstart and How To videos were assigned for homework on the first class and by the second class, my expectation was that each student could create a fairly straightforward process flow diagram in Process Simulator as an in-class lab.

PS first model

Process Simulator – First Student Model

The mechanics of creating a process flow chart in the Process Simulator environment presented no challenges for the students.  However, one of my lessons learned involved the information needed to move from the purely Visio environment to the Process Simulator environment.  The level of detail needed with respect to the amount and type of information to accurately define properties for activities, routing rules and arrivals was of the same magnitude as needed for a simulation exercise using ProModel.

PS properties machine center

Process Simulator – Activity Properties Dialogue Box

Even though the students could apply simulation properties to their Process Simulator diagrams, the output results were far from the expected solution at first.

PM first model capacity graph

Output Viewer – Single Capacity Activity States Graph

Consequently, some time was spent troubleshooting the models.  Yet in the process, students developed a much richer understanding of how to use Process Simulator especially within the context of Lean and Six Sigma methodologies.  After a reasonable level of proficiency was developed with Process Simulator, we were able to export data and further analyze results in Minitab.  We will complete Linda’s story in the next post.

About Dr. Linda Ann Riley Contact Information: linda.ann.riley@gmail.com

Linda Ann Riley, Ph.D. presently serves as an Adjunct Professor of Engineering for the University of New Haven’s graduate program in Engineering and Operations Management. She retired from full time teaching and administration in 2015.  Dr. Riley worked for 12 years at Roger Williams University (RWU) where she held the positions of Associate Dean, Engineering Program Coordinator and Professor of Engineering. Prior to RWU, she was a Professor and Program Director at New Mexico State University for 18 years.  Her teaching experience includes both engineering and business courses and she is the recipient of a number of corporate, university and national excellence in teaching awards. Dr. Riley is the author/co-author of over 100 articles, technical and research reports, and book contributions. Her area of scholarly interest involves stochastic system optimization using simulation and evolutionary algorithms.

Whirlpool and The University of Michigan Collaborate on a Simulation Project Using ProModel Software

Embarking on a simulation project can seem like a daunting task at times, especially if the project must be completed above and beyond one’s normal responsibilities.  During those times, it is beneficial to consider engaging a partner to help.

Of course ProModel provides professional model building and consulting services, but another alternative is to partner with a University that teaches ProModel, MedModel or Process Simulator.  This type of industry | academia collaboration is a win-win for both organizations.

Please check out this very successful simulation project by Whirlpool on which they partnered with the University of Michigan. The article was published in PlantServices.com.

Click here to see a list of colleges and universities using ProModel software products.  If you would like more information about our academic program, please contact us at education@promodel.com or 801-223-4601.

 

 

Get Ready for Fall Semester. Now is the Time to Add Simulation to your Curriculum!

Chrsitne Bunker Linked In

Christine Bunker Academic Program Director

Teaching simulation to your students will give them a head start when they reach industry. Learn some of the benefits of including simulation as you teach techniques for process improvement.

  • Accurate Depiction of Reality
  • Insightful System Evaluations
  • Dynamics for Predictive Analysis
  • Understand Interdependencies
  • Better Experimentation and Data
  • Animated Visualization
  • Advanced Optimization Techniques
  • Bottom Line Savings (Hard Dollar, Soft Dollar, and Labor Savings along with many Intangible Benefits)

For more details on any of these topics visit Justifying Simulation to understand the benefits of simulation.

Learn More about the ProModel Academic Program

To learn more about the academic program, please visit our website or review the ProModel Academic Overview.

If you’re interested in joining the growing ranks of ProModel educators or have any questions, please contact us at education@promodel.com to apply for a full professional license for academic use.

From Reality to Model

Adjunct Prof Mark Klee Headshot

Mark Klee; Adjunct Professor – Eastern Kentucky University

I know what you are thinking “From Reality to Model” shouldn’t that be the other way around? As an engineer at Toyota for the past 24 years I often encounter manufacturing processes that have slowly de-optimized. And now, just by walking by the processes on the floor, I can see waste (motion, waiting, over-processing). I know this means that the these processes need some work.

Our typical method of improving these processes would be to employ the traditional Toyota Production System tools. We begin with observation and time study. Then we use video for motion analysis making these processes visual on paper with standardized work combination tables, standardized work charts, and production capacity calculations. Through these simple analysis tools, the waste in the process becomes more obvious and begins to generate ideas for improvement.

This is typically done one process or one zone of processes at at time. It is also usually done with paper, pencil, and stopwatch. The methods have proven time and again to be effective for process improvement and an effective method of developing engineers as well as manufacturing floor members in process improvement.

After the waste is discovered and the improvement ideas generated it is time to try some improvement ideas. The process visualization and capacity calculation documents are then modified to simulate the improvement idea. Then it is time to try the modified process on the production floor. The concept is tested in a controlled environment. After success is documented, the process standards are modified the team is trained to the new standard.

Using ProModel works very well with the Toyota Production System and as a method for developing manufacturing engineers, manufacturing floor members and students in manufacturing focused curriculum. In Eastern Kentucky University’s Applied Engineering and Management class, we follow this progression.

  • We first focus on learning process observation and visualization skill using the standard Toyota Production System tools.
  • Next we learn the processes of implementing controlled change in a mass production environment. We learn and practice these skills on the manufacturing floor to gain real world experience.
  • After learning the basics of observation and improvement, we come back to the classroom where we employ ProModel to fine tune our processes and learn if there are any opportunities for optimization that may have been overlooked.
  • With ProModel we can also test scenarios that may be difficult to test on the actual production floor like moving a piece of equipment, modifying a cycle time, changing a conveyor length or changing a delivery frequency.
  • These trials can be done as quickly as you can change the numbers in the model allowing for many more cycles of trial and error or trial and success in a shorter time.

As a result of the course and ProModel, students have deeper understanding of both the theory and application of process improvement allowing them to be an instant contributor to a manufacturing organization upon their graduation.

In the end, deeply understanding the current reality through observation, documentation, and modification of the current process helps us make a more accurate model. The result of the more accurate model is further optimization. This deepens learning and the improvement cycle continues.

Brief Bio:

Mark Klee, BS Eastern Kentucky University 1990, MS Purdue University 1992
Toyota Motor Manufacturing Kentucky 1994-Present
Eastern Kentucky University Adjunct Faculty 2012-Present

ProModel Named to “20 Most Promising Simulation Solution Providers” by CIOReview

ProModel has been recognized among an elite group of companies that are featured in the simulation special edition of CIOReview magazine. CIOReview is a print magazine that explores how firms execute the their business and maximize their growth. Keith Vadas, President and CEO of ProModel, was interviewed by CIOReview for the magazine’s cover story.

CIOReview-cover

Challenged with making better decisions faster in an environment of constant change, today’s enterprises are turning to simulation as an enabling platform for decision support. The ability to capture the behavior of complex processes, then quickly create and run alternative scenarios enables enterprises to move from reactive to predictive and prescriptive decision-making. ProModel provides simulation tools and proven end-to-end solutions used by over 60% of the Fortune 500 and across the Public Sector…

Click here to view the full article on CIOReview.com or Read the CIOReview digital magazine article

CIOReview

ProModel and MedModel Optimization Suites 2018

Kevin Field

Kevin Field – Product Manager

This past December we released ProModel and MedModel 2018. You can see all the updates for each product at their respective “What’s New” website pages:

ProModel 2018 – What’s New?
MedModel 2018 – What’s New?

Please click on the video below to see some of the highlights of what’s new in ProModel/MedModel 2018.

ProModel and MedModel Simulation technologies and services help to plan, design and improve manufacturing, logistics and healthcare systems. They accurately represent real-world processes, including their inherent variability and interdependencies, in order to rapidly and easily conduct predictive analysis on multiple scenarios. You can virtually optimize your systems around your key performance indicators, before investing in any changes.

carilion 3rd floor

Proposed Hospital Floor Layout

ProModel Proposed Future Assembly Idea Zf_2.mod

Proposed Mfg Layout

This new release focused on significantly enhancing the UI as well as improving access and navigation to build modules, which helps reduce modeling time.

Here are just a couple of the new features and functionality:

Ribbon UI

The traditional menus and toolbars have been replaced with a fluent Ribbon bar like the one you find in Microsoft Office applications. The new Ribbon makes it easier to access the various modules and features within the application and better facilitate touch screen and high-resolution devices.

PM2018 Ribbon Toolbar

Quick Access Toolbar

Add highly used ribbon buttons to the Quick Access Toolbar (QAT) for fast and easy access to the program functionality they provide (located in the upper left corner of the application). Either select an option from the Customize menu or right-click on a button in the ribbon and choose to add it to the QAT.

customize-quick-access-toolbar

Docking Windows

Windows are now docked within the new workspace interface, which means that when you adjust the size of one window, the others automatically resize accordingly. Say goodbye to overlapping windows. You can also stack windows on top of each other and quickly access them from their respective tab thus saving valuable view space. Windows even proportionally adjust when you resize the entire application.

docking-windows

You can also learn more about this release at the recording of the What’s New? Webinar  as well as a recent ProModel | MedModel 2018 Refresher Training webinar.

Don’t forget, you can also read about all the updates for each product at their respective “What’s New” website pages:

ProModel 2018 – What’s New?       MedModel 2018 – What’s New?

We would love to hear your feedback so please feel free to leave a comment below or to contact me with your thoughts and suggestions at kfield@promodel.com.  Happy Modeling!