Process Simulator 2019 – Released!

Aaron Nelson Product Development Manager Process Simulator

Aaron Nelson Product Development Manager Process Simulator

As ProModel’s new Process Simulator Product Development Manager, I’m really excited to bring you my first blog post in this position.

We launched Process Simulator 2019, our Microsoft® Visio ® plug-in, earlier this year which now supports both 64 and 32 bit Visio 2016.  We have added many other great features to this redesigned product. Check out the highlights below and get the full details on the What’s New page.

Visio 2016 64 and 32-bit support

Dockable Windows – We have redesigned all element property windows and tables and made them dockable within the Visio application work-space. This allows you to keep them open and out of the way so your diagram view space will be clear for quicker modeling changes.

Image-pcs2019-dockable-windows

Find & Replace – Process Simulator now has its own find and replace capability, separate from Visio, which will search across its elements and objects only. It even automatically brings the shape into view and opens the associated property or field where the searched text is found.

Image-pcs2019-find-replace

Model Compile – When you run your model, it is checked for errors prior to simulation. In this release, you are presented with a list of all errors, which allows you to quickly navigate to and resolve the issues.

Image-pcs2019-model-compile

Referenced Hierarchical Models – Submodels now have the ability to be referenced in addition to their current capability of unique instances. This means that activities linking to the same submodel at different points in your diagram will send their entities to that exact submodel (not just unique copies of the submodel).

Activity Multi-Entity Table – We have added Multi-Entity functionality. This allows you to convert your existing models that use multi entity, and create new ones as well, without having to code the functionality using logic. In Shape Properties you can select Multi Entity and then Define.

In this initial release for our US and Canadian customers with current Maintenance and Support, you can get the download in the Solutions Café.  You can also access the Process Simulator 2019 What’s New webinar recording from the solutions cafe.  If you are not a current customer, please contact your Account Manager for details.

Process Simulator 2019 will be available to everyone later this year.  Please let me know if you have any feedback by leaving a comment below or contacting me directly. Thanks!  anelson@promodel.com

Huntsville Utilities Knows How to Win Back Customers

Watch this presentation from the 2017 E Source Forum Conference given by Huntsville Utilities on how they rebuilt customer relationships and prioritized customer experience (CX). ProModel played a role in this turnaround as mentioned starting at the 6:40 mark.

Speaking of Huntsville Alabama – We will be at the annual AUSA Global Force Symposium and Expo at the Von Braun Center in Huntsville, AL Mar 26-28. Stop by ProModel booth #200 and check out our latest products and releases.

ProModel and MedModel Optimization Suites 2018

Kevin Field

Kevin Field – Product Manager

This past December we released ProModel and MedModel 2018. You can see all the updates for each product at their respective “What’s New” website pages:

ProModel 2018 – What’s New?
MedModel 2018 – What’s New?

Please click on the video below to see some of the highlights of what’s new in ProModel/MedModel 2018.

ProModel and MedModel Simulation technologies and services help to plan, design and improve manufacturing, logistics and healthcare systems. They accurately represent real-world processes, including their inherent variability and interdependencies, in order to rapidly and easily conduct predictive analysis on multiple scenarios. You can virtually optimize your systems around your key performance indicators, before investing in any changes.

carilion 3rd floor

Proposed Hospital Floor Layout

ProModel Proposed Future Assembly Idea Zf_2.mod

Proposed Mfg Layout

This new release focused on significantly enhancing the UI as well as improving access and navigation to build modules, which helps reduce modeling time.

Here are just a couple of the new features and functionality:

Ribbon UI

The traditional menus and toolbars have been replaced with a fluent Ribbon bar like the one you find in Microsoft Office applications. The new Ribbon makes it easier to access the various modules and features within the application and better facilitate touch screen and high-resolution devices.

PM2018 Ribbon Toolbar

Quick Access Toolbar

Add highly used ribbon buttons to the Quick Access Toolbar (QAT) for fast and easy access to the program functionality they provide (located in the upper left corner of the application). Either select an option from the Customize menu or right-click on a button in the ribbon and choose to add it to the QAT.

customize-quick-access-toolbar

Docking Windows

Windows are now docked within the new workspace interface, which means that when you adjust the size of one window, the others automatically resize accordingly. Say goodbye to overlapping windows. You can also stack windows on top of each other and quickly access them from their respective tab thus saving valuable view space. Windows even proportionally adjust when you resize the entire application.

docking-windows

You can also learn more about this release at the recording of the What’s New? Webinar  as well as a recent ProModel | MedModel 2018 Refresher Training webinar.

Don’t forget, you can also read about all the updates for each product at their respective “What’s New” website pages:

ProModel 2018 – What’s New?       MedModel 2018 – What’s New?

We would love to hear your feedback so please feel free to leave a comment below or to contact me with your thoughts and suggestions at kfield@promodel.com.  Happy Modeling!


ProModel/MedModel 2018 What’s New Webinar

2018 What's New Header

We will be conducting a live ProModel / MedModel 2018 Release Webinar on Wed Nov 15 from 1-2 pm ET.

What's New Webinar sign up button

The webinar will give you a look at the updated look and feel of the application’s more modern, fluent user interface that provides more ease and control of your model building experience. This significant version will include such features as a Ribbon Toolbar, Docking Windows, and Right-Click Context Menus as described below:

  • Ribbon Toolbar: The traditional menus and toolbars are being replaced with a fluent Ribbon toolbar like you find in Microsoft Office applications. The new Ribbon will make it easier to access the various modules and features within the application and better facilitate touch screen and high-resolution devices.

Ribbon Toobar screen shot

  • Docking Windows: Windows will be docked within the new workspace interface, which means that when you adjust the size of one window, the others automatically resize accordingly. Say goodbye to overlapping windows. You will also be able to stack windows on top of each other and quickly access them from their respective tab thus saving valuable view space.

Dock Screen Shot

  • Right-Click Context Menus:  Context menus will be available in every table and accessible by right-clicking in any field within that table. For example, you will be able to quickly delete, insert or move a record with a simple right-click of the mouse.

Right Click Screen Shot

Join the webinar to hear all about what’s new in the ProModel / MedModel 2018 Release on Wed Nov 15 from 1-2 pm ET.

What's New Webinar sign up button

Save

Save

Save

Save

ProModel AutoCAD App for Warehouses and Distribution Centers

Steve-Courtney-100-x100

Steve Courtney, ProModel Sr. Consultant

I have several years of experience in supply chain and logistics modeling helping clients who have large warehouses and distribution centers.  These models are often very large (thousands or tens of thousands of locations), which can be very time consuming to model.  I’ve found the old adage to be very true: “Necessity is the Mother of Invention”, so I developed a ProModel App that is used from within AutoCAD which enables us to quickly build the graphical portions of the model using OLE automation.  This capability is also very useful when experimenting with several different layouts.

The types of Warehouse / DC modeling questions that can be answered include:

  • Slotting questions – where should my SKUs go?
  • Racking questions – which type of racking is best (flow rack, bin shelving, single pallet deep, double pallet deep, drive-in racking, etc.)?
  • How high should our racking go 5 levels, 7 levels, etc?
  • Which material handling devices are best – narrow aisle, forklifts, single/double/triple pallet jack, reach trucks, side loaders, clamp trucks, electric/propane/natural gas, etc.?
  • Staffing questions – how many of each type and when?

I recently gave a webinar on this topic which you can view here

The requirements for using the app include:

  • Current AutoCAD drawing
  • AutoCAD not AutoCAD Light
  • Know where each location is physically on the drawing
  • Location levels 2-X should be mapped to the level 1 location
  • Build indexed location file in the order you plan to add to the drawing
  • Know which material handling device accesses each location

If you would like to discuss this further, or have other ideas that can help us all improve warehouse and distribution center modeling, please comment below.  Thanks and Happy Modeling!

Thanks, Steve Courtney

 

Teaching Process Management Using ProModel

ProModel Guest Blogger:  Scott Metlen, Ph.D. – Business Department Head and Associate Professor at University of Idaho

Scott Metlen, Ph.D.

Scott Metlen, Ph.D.

Understanding process management, the design, implementation, management and control, and continuous improvement of the enterprise wide set of an organizations processes is the key to well deployed strategies. It was not until Tim Cook made Apple’s total set of processes world class including all supply chain linked processes (Brownlee, 2012) that Apple hit its amazing climb to become the world’s highest valued company; even though the company had cutting edge products before his arrival. Gaining effective understanding of process management is not easy due to the strategic variability inherent in the portfolio of products that companies sell, and in markets they service. This strategic variability (Rajan, 2011) in turn drives variability in many processes that an organization uses to operate. For instance, different markets require different marketing plans supported by different processes.  Order processes often vary by product and target market. Employee skill sets differ by product requiring different hiring and training processes. Different products, whether it be services or goods that have a slight variation require, at the very least, an adjustment to the production process. Adding to, and often caused by the variability just mentioned, are multiple process steps, each with different duration times and human resource skills.  Depending on what product is currently being produced, process steps, process step order and duration time, interdependency between the process steps, and business rules all vary. Where a product is in its life cycle will drive the experience curve, again creating variation across products. In addition, the numerous interfaces with other processes all vary depending on the product being produced. All of these sources of variability can make process management hard to do, teach, and learn. One tool that helps with process management in the face of variance is discrete event simulation and one of the best software suites to use is ProModel. ProModel is a flexible program with excellent product support from the company.

Effective process management is a multi-step process. The first step of process management is to determine the process flow while at the same time determining the value and non-value added process steps. Included in the process flow diagram for each step are the duration times by product and resources needed at each step, and product routes. Also needed at this time are business rules governing the process such as working hours, safety envelopes, quality control, queueing rules, and many others. Capturing this complex interrelated system begins by visiting the process and talking with the process owner and operators. Drawing the diagram and listing other information is a good second step, but actually building and operating the process is when a person truly understands the process and its complexities.  Of course many of the processes we want to improve are already built and are in use. In most cases, students will not be able to do either of these. However, building a verified and validated simulation model is a good proxy for doing the real thing, as the model will never validate against the actual process output unless all of the complexity is included or represented in the model. In the ‘Systems and Simulation’ course at the University of Idaho students first learn fundamentals of process management including lean terms and tools. Then they are given the opportunity to visit a company in the third week of class as a member of a team to conduct a process improvement project. In this visit students meet the process owner and operators. If the process is a production process, they walk the floor and discuss the process and the delta between expected and actual output. If the process is an information flow process, such as much of an order process, the students discuss the process and, again, the delta between expected and realized output. Over the next six weeks students take the preliminary data and begin to build a simulation model of the current state of the process. During this time period students discover that they do not have all the data and information they need to replicate the actual process. In many cases they do not have the data and/or information because the company does not have that information or how the model is operated is not the same as designed. Students then have to contact the process owner and operators throughout the six weeks to determine the actual business rules used and/or make informed assumptions to complete their model.

Once the model has been validated and the students have a deep understanding of the process, students start modeling process changes that will eliminate waste in the system, increase output, and decrease cost. Examples of methods used to improve the process include changing business rules, adding strategically placed buffers and resources, and reallocating resources. To determine the most effective way to improve the process, a cost benefit analysis in the form of an NPV analysis is completed. The students use the distribution of outputs from the original model to generate appropriate output and then compare that output to output pulled from the distributions of each improvement scenario. This comparison is then used to determine a 95% confidence interval for the NPV and the probability of the NPV being zero or less. Finally, several weeks before the semester is finished, students travel to the company to present their findings and recommendations.

Student learning on these projects is multifaceted. Learning how to use ProModel is the level that the students are most aware of during the semester, as it takes much of their time. However, by the end of the semester they talk about improving their ability to manage processes, work in teams, deal with ambiguity, manage multiple projects, present to high level managers, and maintain steady communication with project owners.

Utilizing external projects and discrete event simulation to teach process management has been used in the College of Business and Economics at the University of Idaho for the past six years. As a result, the Production and Operation area has grown from 40 to 150 students and from five to 20 projects per semester. More importantly, students who complete this course are being sought out and hired by firms based on the transformational learning and skill sets students acquired through the program.

References:

Rajan Suri. Beyond Lean: It’s About Time. 2011 Technical Report, Center for Quick Response Manufacturing, University of Wisconsin-Madison.

Brownlee, John. Apples’s Secret Weapon 06/13/2012. http://www.cnn.com/2012/06/12/opinion/brownlee-apple-secret/index.html?hpt=hp_t2. 12/301/2014.

Scott Metlen Bio:

http://www.uidaho.edu/cbe/business/scottmetlen

 

Demystifying System Complexity

Charles Harrell, Founder ProModel Corporation

Charles Harrell, Founder ProModel Corporation

One can’t help but be awe struck, and sometimes even a little annoyed, by the complexity of modern society. This complexity spills over into everyday business systems making them extraordinarily challenging to plan and operate. Enter any factory or healthcare facility and you can sense the confusion and lack of coordination that often seems to prevail. Much of what is intended to be a coordinated effort to get a job done ends up being little more than random commotion resulting in chance outcomes. Welcome to the world of complex systems!

A “complex system” is defined as “a functional whole, consisting of interdependent and variable parts.” (Chris Lucas, Quantifying Complexity Theory, 1999, http://www.calresco.org/lucas/quantify.htm) System complexity, therefore, is a function of both the interdependencies and variability in a system. Interdependencies occur when activities depend on other activities or conditions for their execution. For example, an inspection activity can’t occur until the object being inspected is present and the resources needed for the inspection are available. Variability occurs when there is variation in activity times, arrivals, resource interruptions, etc. As shown below, the performance and predictability of a system is inversely proportional to the degree of interdependency and variability in the system.

Untitled-1

Suppose, for example, you are designing a small work cell or outpatient facility that has five sequential stations with variable activity times and limited buffers or waiting capacity in between. Suppose further that the resources needed for this process experience random interruptions. How does one begin to estimate the output capacity of such a system? More importantly, how does one know what improvements to make to best meet performance objectives?

Obviously, the larger the process and greater the complexity, the more difficult it is to predict how a system will perform and what impact design decisions and operating policies will have. The one thing most systems experts agree on, however, is that increasing complexity tends to have an adverse effect on all aspects of system performance including throughput, resource utilization, time in system and product or service quality.

For Charleys new blog

ProModel and Medmodel are powerful analytic tools that are able to account for the complex relationships in a system and eliminate the guesswork in systems planning. Because these simulation tools imitate the actual operation of a system, they provides valuable insights into system behavior with quantitative measures of system performance.

To help introduce process novices to the way interdependencies and variability impact system performance, ProModel has developed a set of training exercises using an Excel interface to either ProModel or MedModel. Each exercise exposes the initiate to increasingly greater system complexity and how system performance is affected. Additionally, these exercises demonstrate the fundamental ways system complexity can be mitigated and effectively managed.

ProModel is offering these exercises to students and practitioners who are seeking an introduction to simulation and systems dynamics.

 

For more information please contact ProModel Academic

Sandra Petty, Academic Coordinator  spetty@promodel.com